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Abstract
An exact analytic solution is obtained for a uniformly expanding, neutral,
infinitely conducting plasma sphere in an external dipole magnetic field. The
electrodynamical aspects related to the radiation and transformation of energy
were considered as well. The results obtained can be used in analysing the
recent experimental and simulation data.

PACS numbers: 03.50.De, 41.20.Gz, 41.20.Jb, 52.30.−q

1. Introduction

Many processes in physics involve boundary surfaces, which requires the solution of boundary
and initial value problems. The introduction of a moving boundary into the physics usually
precludes the achievement of an exact analytic solution of the problem and recourse to the
approximation methods is required [1, 2] (see also [3] and references therein). In the case of a
moving plane boundary a time-dependent translation of the embedding space immobilizes the
boundary at the expense of the increased complexity of the differential equation. It is the aim
of this work to present an example of a soluble moving boundary and initial value problem in
the spherical geometry.

The problems with the moving boundary arise in many area of physics. One important
example is the sudden expansion of hot plasma with a sharp boundary in an external magnetic
field which is particularly of interest for many astrophysical and laboratory applications (see,
e.g., [4] and references therein). Such kind of processes arise during the dynamics of solar
flares and flow of the solar wind around the earth’s magnetosphere, in active experiments
with plasma clouds in space, and in the course of interpreting a number of astrophysical
observations [3–9]. Researches on this problem are of considerable interest in connection
with the experiments on controlled thermonuclear fusion [11] (a recent review [4] summarizes
research in this area over the past four decades).
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To study the radial dynamics and evolution of the initially spherical plasma cloud both
analytical and numerical approaches were developed (see, e.g., [3–9] and references therein).
The plasma cloud is shielded from the penetration of the external magnetic field by means of
the surface currents circulating inside the thin layer on the plasma boundary. Ponderomotive
forces resulting from interaction of these currents with the magnetic field would act on the
plasma surface as if there were magnetic pressure applied from outside. After some period
of accelerated motion, plasma gets decelerated as a result of this external magnetic pressure
acting inward. The plasma has been considered as a highly conducting matter with zero
magnetic field inside. From the point of view of electrodynamics it is similar to the expansion
of a superconducting sphere in a magnetic field. An exact analytic solution for a uniformly
expanding, superconducting plasma sphere in an external uniform and constant magnetic field
has been obtained in [12]. The non-relativistic limit of this theory has been used by Raizer [13]
to analyse the energy balance (energy radiation and transformation) during the plasma
expansion. The similar problem has been considered in [8] for a plasma layer. In the
present paper we study the uniform expansion of the superconducting plasma sphere in the
presence of a dipole magnetic field. For this geometry we found an exact analytical solution
which can be used in analysing the recent experimental and simulation data (see [10] and
references therein).

2. Magnetostatic treatment

In this section we first consider the simpler example of a non-relativistic expansion of the
plasma sphere (v � c, where v is the radial velocity of the sphere) in the presence of a dipole
magnetic field. Consider the magnetic dipole p and a superconducting sphere with radius R
located at the origin of the coordinate system. The dipole is placed in the position r0 from the
centre of the sphere (R < r0). The orientation of the dipole is given by the angle θp between
the vectors p and r0. Here it is convenient to introduce the scalar magnetic potential ψ0(r) of
the dipole magnetic field which is given by

ψ0(r) = p · (r − r0)

|r − r0|3 . (1)

The dipole magnetic field is then calculated as H0(r) = −∇ψ0(r),

H0(r) = 1

|r − r0|3
[

3(r − r0)[p · (r − r0)]

|r − r0|2 − p
]

. (2)

When the superconducting sphere is introduced into a background magnetic field, the
plasma expands and excludes the background magnetic field to form a magnetic cavity. The
magnetic energy of the dipole in the excluded volume, i.e., in the volume of the superconducting
sphere, is calculated as

QR =
∫

r�R

H 2
0 (r)
8π

dr

= p2

32r3
0

{
ξ(1 − ξ 4)(3 cos2 θp − 1) + 8ξ 3(1 + cos2 θp)

(1 − ξ 2)3
− 3 cos2 θp − 1

2
ln

1 + ξ

1 − ξ

}
, (3)

where ξ = R/r0 < 1. This energy increases with decreasing θp and reaches its maximum
value at θp = 0 or θp = π , that is the magnetic moment p is parallel or antiparallel to the
symmetry axis r0. In addition, the magnetic energy QR decays rapidly with the distance r0

and for large r0 � R is given by

QR = p2R3

6r6
0

(3 cos2 θp + 1). (4)
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In the case when the dipole approaches to the surface of the sphere r0 � R the magnetic field
of the dipole becomes very large and tends to the infinity as

QR = p2

32r3
0

1 + cos2 θp

(1 − ξ)3
. (5)

We now turn to solve the boundary problem and calculate the induced magnetic field
which arises near the surface of the sphere due to the dipole magnetic field. Since the sphere
is superconducting the magnetic field vanishes inside the sphere. In addition, the normal
component of the field Hr vanishes on the surface of the sphere. To solve the boundary
problem we introduce the spherical coordinate system with the z-axis along the vector r0 and
the azimuthal angle φ is counted from the plane (xz-plane) containing the vectors r0 and p.
Hence, using expressions (A.2)–(A.4), the scalar potential (1) at r < r0 can alternatively be
represented by the sum of Legendre polynomials (see appendix A for details):

ψ0(r) = p

r2
0

[
sin θp cos φ

∞∑
l=1

(
r

r0

)l

P 1
l (cos θ) − cos θp

∞∑
l=0

(l + 1)

(
r

r0

)l

Pl (cos θ)

]
. (6)

The total magnetic field which is a sum of H0(r) and the induced magnetic field is obtained
from the equation ∇ · H = 0. Introducing the scalar potential, H(r) = −∇ψ(r), the last
equation becomes ∇2ψ(r) = 0, i.e., ψ(r) satisfies the Laplace equation. We must solve this
equation with H = 0 at r < R and the boundary condition

Hr |r=R = −∂ψ

∂r

∣∣∣∣
r=R

= 0. (7)

We look for the solution of the Laplace equation which in a spherical coordinate system
and at r � R can be written as

ψ(r) = ψ0(r) +
p

r2
0

[ ∞∑
l=0

αl

(
R

r

)l+1

Pl(cos θ) + cos φ

∞∑
l=1

βl

(
R

r

)l+1

P 1
l (cos θ)

]
, (8)

where αl and βl are the arbitrary constants and should be obtained from the boundary
condition (7). The second term in equation (8) is the induced magnetic field. From
equations (6)–(8) one finds

αl = −l

(
R

r0

)l

cos θp, βl = l

l + 1

(
R

r0

)l

sin θp. (9)

Substituting equation (9) into equation (8) and using the summation formula obtained in
appendix A from (8) we find

ψ(r) = p · R0

R3
0

+
Q · R∗

R3∗
+ ψQD(r), (10)

where

ψQD(r) = −ξ 3 (p⊥ · R∗)
R3∗

(
R2

∗
r · R∗ + rR∗

− 1

2

)
. (11)

Here r∗ = ξ 2r0, R0 = r − r0, R∗ = r − r∗,

p⊥ = p − (p · r0)r0

r2
0

, Q = ξ 3

2

[
p − 3(p · r0)r0

r2
0

]
. (12)

The term ψQD(r) in equation (10) can be interpreted as a magnetic field of point-like
quadrupole with the ‘quadrupole moment’ Dαβ(r) and located in the xz-plane inside the
sphere at the distance r∗(r∗ = ξR < R) from the centre. At large distances this
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term behaves as ψQD(r) � xzDxz/r5 with the quadrupole moment Dxz = r0
2 ξ 5p sin θp

(Dαα = Dxy = Dyz = 0 and α = x, y, z). The induced electric field is calculated from
Maxwell’s equation ∇ × E = − 1

c
∂H
∂t

. However, if the plasma radial velocity is small,
v/c � 1, the amplitude of the electric field is small as well (of the order of v

c
H0(r)) and

may be completely ignored. Below we consider two particular cases for the magnetic dipole
orientation in the space.

(i) The case θp = 0;π . In this case the magnetic dipole is parallel or antiparallel to the
vector r0. Obviously due to the symmetry reason the magnetic field does not depend on φ and
Hφ = 0. The magnetic field component Hθ = −(1/r)(∂ψ/∂θ) induces the surface current
on the sphere. The ponderomotive forces resulting from the interaction of this current with
the magnetic field act on the sphere surface with a magnetic pressure which can be calculated
as an energy density of the magnetic field,

P‖(θ) = H 2
θ

8π

∣∣∣∣
r=R

= 9p2

8πr6
0

(1 − ξ 2)2 sin2 θ

(ξ 2 + 1 − 2ξ cos θ)5
. (13)

This pressure vanishes at θ = 0, π and has its maximum at

cos θmax = 10ξ√
(ξ 2 + 1)2 + 60ξ 2 + ξ 2 + 1

. (14)

The value of θmax tends to zero when the dipole comes close to the sphere and shifts
towards the larger values, θmax � π/2, when the dipole goes to the infinity. Therefore the
layer near θ � θmax of the expanding sphere will be mainly deformed by the external magnetic
pressure. This behaviour is clearly seen in the particle-in-cell simulation [14].

The total force is calculated as a surface integral of the magnetic pressure,

F‖ = 2πR2
∫ π

0
P‖(θ) sin θ dθ = 3p2

r4
0

ξ 2(1 + ξ 2)

(1 − ξ 2)4
. (15)

This force behaves as F‖ ∼ l−s with s = 6 and s = 4 at large and small distances between
the dipole and the surface of the sphere, respectively.

(ii) The case θp = π/2. In this case there are two components of the surface currents which
are proportional to Hθ and Hφ at r = R. The magnetic pressure is then given by

P⊥(θ, φ) = H 2
θ + H 2

φ

8π

∣∣∣∣∣
r=R

= p2

8πr6
0

ϒ2
1 (ξ, θ) cos2 φ + ϒ2

2 (ξ, θ) sin2 φ

ϒ6(ξ, θ)
, (16)

where

ϒ1(ξ, θ) = ϒ2 (ξ, θ) cos θ − ξ sin2 θ

[
6

ϒ2
− 1

1 − ξ cos θ + ϒ
− ϒ(1 + ϒ)

(1 − ξ cos θ + ϒ)2

]
, (17)

ϒ2(ξ, θ) = 1 − ξ 2 + 2ϒ

1 − ξ cos θ + ϒ
, ϒ =

√
1 + ξ 2 − 2ξ cos θ. (18)

At large distances, ξ � 1, the magnetic pressure is maximum at φ � π
2 and 3π

2 (in equatorial
plane), and θ = 0, π . At small distances, 1 − ξ � 1, only the region of the sphere with
θ ∼ 1 − ξ ∼ 0 will be strongly deformed.

The total ponderomotive magnetic force acting on the sphere is calculated as

F⊥ = R2
∫ π

0
sin θ dθ

∫ 2π

0
P⊥(θ, φ) dφ = p2

4r4
0

ξ 2(3 + 8ξ 2 + ξ 4)

(1 − ξ 2)4
. (19)
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Again as for θp = 0, π the force F⊥ behaves as F⊥ ∼ l−s with s = 6 and s = 4 at large and
small distances, respectively. However, comparing equations (15) and (19) we conclude that
the total magnetic force at θp = π/2 is smaller than for parallel or antiparallel orientation of
the dipole. For instance, from equations (15) and (19) we obtain F‖ � 4F⊥ and F‖ � 2F⊥ at
ξ � 1 and ξ ∼ 1, respectively.

3. Electrodynamic treatment

In this section we consider the moving boundary problem of the plasma sphere expansion in
the vacuum. In this sense unlike the magnetostatic problem considered above it is convenient
here to introduce the vector potential of the induced and dipole magnetic fields. Consider a
spherical region of space containing a neutral infinitely conducting plasma which has expanded
at t = 0 to its present state from a point source located at the point r = 0. The external space
at the point r0 contains a magnetic dipole p. The magnetic field of this dipole is given by
H0 = ∇ × A0, where the vector potential A0 is

A0 = p × (r − r0)

|r − r0|3 . (20)

As the spherical plasma cloud expands it both perturbs the external magnetic field and
generates an electric field. Within the spherical plasma region there is neither an electric
field nor a magnetic field. We shall obtain an analytic solution of the electromagnetic field
configuration.

We consider a practically interesting case when the vectors p and r0 are parallel (or
antiparallel). The general solution for the arbitrary orientation of p will be considered in a
separate paper. Within this geometry the problem is symmetric with respect to the axis r0

which is chosen as the axial axis of the spherical coordinate system. Then there is only one
nonvanishing component of A0, A0r = A0θ = 0, and

A0ϕ = pr sin θ

|r − r0|3 = p

r2
0

∞∑
l=1

Dl

(
r

r0

)
P 1

l (cos θ), (21)

where P ν
l (x) is the generalized Legendre polynomials with ν = 1. Here Dl(x) = xl at x � 1

and Dl(x) = x−l−1 at x > 1 as defined in appendix A.
Since the external region is devoid of free charge density, a suitable gauge allows the

electric and magnetic fields to be derived from the vector potential A. Having in mind the
symmetry of the original dipole magnetic field it is sufficient to choose the vector potential in
the form Ar = Aθ = 0,

Aϕ(r, θ, t) = A0ϕ(r, θ) +
∞∑
l=1

Al(r, t)P
1
l (cos θ), (22)

and the components of the electromagnetic field are given by

Hr = 1

r

∂Aϕ

∂θ
, Hθ = −∂Aϕ

∂r
, Eϕ = −1

c

∂Aϕ

∂t
, (23)

and Hϕ = Er = Eθ = 0. The equation for Al(r, t) is obtained from Maxwell’s equations,

∂2Al

∂r2
+

2

r

∂Al

∂r
− l(l + 1)

r2
Al − 1

c2

∂2Al

∂t2
= 0. (24)

This equation is to be solved in the external region r > R(t) subject to the boundary and
initial conditions. Here R(t) is the plasma sphere radius at the time t. The initial conditions
are at t = 0,

Al(r, 0) = 0,
∂Al(r, 0)

∂t
= 0. (25)
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The first initial condition states that the initial value of Aϕ is that of a dipole magnetic field.
The second initial condition states that there is no initial electric field. Boundary conditions
should be imposed at the spherical surface r = R(t) and at infinity. Because of the finite
propagation velocity of the perturbed electromagnetic field the magnetic field at infinity will
remain undisturbed for all finite times. Further, no incoming wave-type solutions are permitted.
Thus, for all finite times Al(r, t) → 0 at r → ∞. The boundary condition at the expanding
spherical surface is Hr = 0, which can be replaced by Aϕ(R(t), θ, t) = 0 or, alternatively,

Al(R(t), t) = − p

r2
0

Dl

(
R(t)

r0

)
. (26)

The problem of solving equation (24) subject to the initial and boundary conditions will
be accomplished by the Laplace transform theory. The Laplace transform Ãl(r, λ) of the
function Al(r, t) is introduced by

Ãl(r, λ) =
∫ ∞

0
Al(r, t) e−λt dt (27)

with Re λ > 0. An inverse transformation is established by

Al(r, t) = 1

2π i

∫ σ+i∞

σ−i∞
Ãl(r, λ) eλt dλ. (28)

The real parameter σ should be larger than Re λi , σ > Re λi , where λi are the poles of Ãl(r, λ).
The differential equation for Ãl(r, λ) is found from equations (24) and (28) and the initial

conditions in (25):

∂2Ãl(r, λ)

∂r2
+

2

r

∂Ãl(r, λ)

∂r
−

[
l(l + 1)

r2
+

λ2

c2

]
Ãl(r, λ) = 0. (29)

Its solution may be written as

Ãl(r, λ) = p

r2
0

[
al(λ)h

(1)
l

(
i
λ

c
r

)
+ cl(λ)h

(2)
l

(
i
λ

c
r

)]
, (30)

where h
(1)
l (z) and h

(2)
l (z) are the Hankel spherical functions and al(λ), cl(λ) are arbitrary

functions of λ determined from the boundary conditions. Since h
(2)
l (z) gives rise to incoming

waves, we should set cl(λ) = 0. The solution to equation (24) at r > R(t) now may be written
in the form

Aϕ(r, θ, t) = p

r2
0

∞∑
l=1

P 1
l (cos θ)

[
Dl

(
r

r0

)
+

1

2π

∫ iσ+∞

iσ−∞
bl(λ)h

(1)
l

(
λ

c
r

)
e−iλt dλ

]
, (31)

where bl(λ) = al(−iλ).
The moving boundary condition in equation (26) requires the satisfaction of

1

2π i

∫ iσ+∞

iσ−∞
bl(λ)h

(1)
l

(
λ

c
R(t)

)
e−iλt dλ = iDl

(
R(t)

r0

)
. (32)

Since the sphere moves with a radial velocity v less than the velocity of light c, we have
R < ct or t − R(t)/c > 0. Thus, the contour in the integral of equation (32) should be closed
by an infinite semicircle in the lower half plane and the integral evaluated by the method of
residues.

Explicit evaluation of this integral equation (32) may be accomplished in the special case
of a uniform expansion. Choosing the simple model of constant radial velocity R(t) = vt and
assuming that R(t) < r0 equation (32) yields (see appendix B for details)

bl(λ) = (−1)l(v/r0)
l

λl+1

iβ

(1 − β2)
l+1
2

1

P −l−1
l (1/β)

, (33)
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where β = v/c < 1. Here P ν
µ(z) are the generalized Legendre functions with z > 1, µ = l

and ν = −l − 1.
The solution of equations (24) and (31) may be obtained by inserting equation (33)

into (31) and evaluating the integral (see appendix B for details). The complete solution may
finally be written in the form, at vt < r < ct ,

Aϕ(r, θ, t) = A0ϕ(r, θ) − p

r2
0

∞∑
l=1

(
r

r0

)l
pl(1/ζ )

pl(1/β)
P 1

l (cos θ), (34)

Aϕ(r, θ, t) = A0ϕ(r, θ) at r � ct and Aϕ(r, θ, t) = 0 at r � vt . Here ζ = r/ct < 1, and

pl(z) = 2l l!(z2 − 1)
l+1
2 P −l−1

l (z) =
∫ z

1
(τ 2 − 1)l dτ. (35)

The electromagnetic field components can be evaluated according to equation (23). From
equations (23) and (34) it can be easily checked that the boundary condition on the moving
surface, E(R) = − 1

c
[v × H(R)] (or Eϕ(R) = −βHθ(R)), is satisfied automatically. It may

also be noted that this special case of the uniform expansion falls within the conical flow
techniques, as indicated in [12] for the case of a uniform magnetic field. From symmetry
considerations one seeks a solution of the form Al(r, t) = rν�(r/ct). Substitution into the
differential equation (24) yields an explicitly solvable ordinary differential equation whose
solution, upon application of the boundary conditions

(
�(1) = 0,�(β) = −p/rl+2

0

)
, is given

by equation (34).
It should be noted that all the above results are valid only for R(t) < r0 or t < r0/v. At

the time t = r0/v the dipole will enter into the plasma sphere and hence will be completely
shielded by the latter. Therefore at t � r0/v the total electromagnetic field vanishes and the
radiation is interrupted.

4. Energy balance

Previously significant attention has been paid [8, 13] to the question of what fraction of
energy is emitted and lost in the form of electromagnetic pulse propagating outwards of the
expanding plasma. In this section we consider the energy balance during the plasma sphere
expansion in the presence of the magnetic dipole. When the plasma sphere of the zero initial
radius is created at t = 0 and starts expanding, external magnetic field H0 is perturbed by
the electromagnetic pulse, H′(r, t) = H(r, t) − H0(r), E(r, t), propagating outwards with the
speed of light. The tail of this pulse coincides with the moving plasma boundary r = R(t)

while the leading edge is at r = ct . Ahead of the leading edge, the magnetic field is not
perturbed and equals H0(r) while the electric field is zero.

Our starting point is the energy balance equation (Poynting equation)

∇ · S = −j · E − ∂

∂t

E2 + H 2

8π
, (36)

where S = c
4π

[E × H] is the Poynting vector and j = jϕ eϕ (with | eϕ| = 1) is the azimuthal
surface current density. The energy radiated to infinity is measured as a Poynting vector
integrated over time and over the surface Sc of the sphere with radius rc < r0 (control sphere)
and the volume �c enclosing the plasma sphere (rc > R or 0 � t < rc/v). Integrating over
time and over the volume �c equation (36) can be represented as

WS(t) = WJ (t) + �WEM(t), (37)

where

WS(t) = 2πr2
c

∫ t

0
dt ′

∫ π

0
Sr sin θ dθ, WJ (t) = −

∫ t

0
dt ′

∫
�c

j · E dr. (38)
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Here Sr = − c
4π

EϕHθ is the radial component of the Poynting vector. WEM(t) and
�WEM(t) = WEM(0) − WEM(t) are the total electromagnetic energy and its change (with
minus sign) in a volume �c, respectively. WJ (t) is the energy transferred from the plasma
sphere to the electromagnetic field and is the mechanical work with minus sign performed
by the plasma on the external electromagnetic pressure. At t = 0 the electromagnetic fields
are given by H(r, t) = H0(r) and E(r, t) = 0. Hence WEM(0) is the energy of the dipole
magnetic field in a volume �c and can be calculated from equation (3) by replacing R by rc

and setting sin θp = 0,

WEM(0) =
∫

�c

H 2
0 (r)
8π

dr = Q(u) = p2

16r3
0

[
u(1 − u4 + 8u2)

(1 − u2)3
− 1

2
ln

1 + u

1 − u

]
, (39)

where u = rc

r0
< 1. Then the change of the electromagnetic energy �WEM(t) in a volume �c

can be evaluated as

�WEM(t) = −
∫

�c

E2 + H 2 − H 2
0

8π
dr = Q(u) −

∫
�′

c

E2 + H 2

8π
dr. (40)

In equation (40) �′
c is the volume of the control sphere excluding the volume of the plasma

sphere (we take into account that H(r, t) = E(r, t) = 0 in a plasma sphere). Hence the total
energy flux WS(t) given by equation (38) is calculated as a sum of the energy loss by the plasma
due to the external electromagnetic pressure and the decrease of the electromagnetic energy
in a control volume �c. For the non-relativistic (β � 1) expansion of a one-dimensional
plasma slab and for a uniform external magnetic field (H0 = const) WS � 2WJ � 2�WEM,
i.e., approximately the half of the outgoing energy is gained from the plasma, while the other
half is gained from the magnetic energy [8]. In the case of the non-relativistic expansion
of a highly-conducting spherical plasma in the uniform magnetic field the outgoing energy
WS is distributed between WJ and �WEM according to WJ = 1.5Q0 and �WEM = 0.5Q0

with WS = 2Q0, where Q0 = H 2
0 R3/6 is the magnetic energy escaped from the plasma

volume [13]. Therefore in this case the released electromagnetic energy is mainly gained from
the plasma.

Consider now each energy component WS(t), WJ (t) and �WEM(t) separately. WS(t) is
calculated from equation (38). In the first expression of equation (38) the t ′-integral must be
performed at rc

c
� t ′ � t (t < rc

v
) since at 0 � t ′ < rc

c
the electromagnetic pulse does not

reach to the control surface yet and Sr(rc) = 0. From equations (23), (34) and (38) we obtain

WS(t) = Q(u) +
p2

2r3
0

∞∑
l=1

l(l + 1)

2l + 1
u2l+1

{
(1/η2 − 1)2l+1

(2l + 1)p2
l (1/β)

− (l + 1)

[
pl(1/η)

pl(1/β)
− 1

]2
}

,

(41)

where η = rc/ct < 1. In the non-relativistic limit, β → 0, using the asymptotic expression
(see, e.g., [15]) pl(z) = z2l+1/(2l + 1) at z → ∞, from equation (41) we obtain

WS(t) = 2Q(ξ) − Q(κ) +
p2

r3
0

κ3

(1 − κ2)3

= p2

16r3
0

[
2ξ(1 + 8ξ 2 − ξ 4)

(1 − ξ 2)3
+

κ(κ4 + 8κ2 − 1)

(1 − κ2)3
− 1

2
ln

(1 − κ)(1 + ξ)2

(1 + κ)(1 − ξ)2

]
(42)

with κ = R2/r0rc. In equation (42) Q(κ) represents the magnetic energy of the dipole field
in a sphere having the radius R∗ = R2/rc < R and enclosed in the plasma sphere.

Next, we calculate the energy loss WJ (t) by the plasma which is determined by the surface
current density, j. From the symmetry reason it is clear that this current has only an azimuthal
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component and is localized within a thin spherical skin layer, R − δ < r < R + δ with δ → 0,
near the plasma boundary. Therefore in equation (38) the volume �c can be replaced by the
volume �δ ∼ R2δ which includes the space between the spheres with r = R−δ and r = R+δ.
The surface current density is calculated from Maxwell’s equation, j = (1/4π)

(
c∇ ×H− ∂E

∂t

)
.

Within the skin layer we take into account that E = − 1
c
[v × H] and Hr(R) = 0. Then

QJ (t) = −
∫

�δ

j · E dr = 1

4π

∫
�δ

v · [H × (∇ × H)] dr +
1

8π

∫
�δ

∂E2

∂t
dr

= v

∫
SR

H 2
θ (R) − E2

ϕ(R)

8π
dS = v

γ 2

∫
SR

H 2
θ (R)

8π
dS, (43)

where γ −2 = 1 − β2 and SR are the relativistic factor and the surface of the expanding
plasma, respectively. Note that the moving boundary modifies the surface current which is
now proportional to γ −2 [3]. In equation (43) the term with ∂E2(r,t)

∂t
has been transformed to

the surface integral using the fact that the boundary of the volume �δ moves with a constant
velocity v and the electrical field has a jump across the plasma surface. Equation (43) shows
that the energy loss by the plasma per unit time is equal to the work performed by the plasma
on the external electromagnetic pressure. This external pressure is formed by the difference
between magnetic and electric pressures, i.e., the induced electric field tends to decrease the
force acting on the expanding plasma surface. The total energy loss by the plasma sphere is
calculated as

WJ (t) =
∫ t

0
QJ (t ′) dt ′ = p2

2r3
0

∞∑
l=1

l(l + 1)

(2l + 1)2

(
ξ

β2γ 2

)2l+1 1

p2
l (1/β)

, (44)

where ξ = R/r0. In a non-relativistic case equation (44) yields

WJ (t) = p2

r3
0

ξ 3

(1 − ξ 2)3
. (45)

The change of the electromagnetic energy in a control sphere is calculated from
equation (40). At R < rc < ct (the electromagnetic pulse fills the whole control sphere)
we obtain

�WEM(t) = Q(u) − p2

2r3
0

∞∑
l=1

l(l + 1)

(2l + 1)2

(
ξ

β2γ 2

)2l+1 1

p2
l (1/β)

+
p2

2r3
0

∞∑
l=1

l(l + 1)

2l + 1
u2l+1

{
(1/η2 − 1)2l+1

(2l + 1)p2
l (1/β)

− (l + 1)

[
pl(1/η)

pl(1/β)
− 1

]2
}

. (46)

Comparing equations (41), (44) and (46) we conclude that �WEM(t) + WJ (t) = WS(t) as
predicted by the energy balance equation (37). The non-relativistic limit of equation (46) can
be evaluated from equations (42) and (45) using the relation �WEM(t) = WS(t) − WJ (t).
As an example in figure 1 we show the results of model calculations for the ratios
�S(t) = WS(t)/Q0(t) and �J (t) = WJ (t)/Q0(t) as a function of time (rc/c � t < rc/v).
Here Q0(t) = Q(ξ) is the dipole magnetic energy escaped from the plasma sphere. For the
relativistic factor β we have chosen a wide range of values. We recall that at 0 � t � rc/c, i.e.
the electromagnetic pulse does not yet reach to the surface of the control sphere, WS(t) = 0.
Unlike the case with uniform magnetic field discussed above (see also [8, 13]) there are no
simple relations between the energy components WS(t),WJ (t) and Q0(t). However, at the
initial stage (t � rc/v) of the non-relativistic expansion the dipole field at large distances
can be treated as uniform and the energies WS(t) and WJ (t) are close to the values 2Q0(t)
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Figure 1. The ratios �S(t) (solid lines) and �J (t) (dashed lines) for four values of β as a function
of t (in units of r0/c) calculated from expressions (41) and (44) with rc = 0.5r0.

and 1.5Q0(t) (see figure 1), respectively. For any β the ratio �J (t) is almost constant
and may be approximated as �J (t) � �J (0) or alternatively WJ (t) � 1.5CQ0(t), where
C = γ −6(1 − β)−4(1 + 2β)−2 is some kinematic factor. For β ∼ 1 this factor is very large
and behaves as C � (8/9)(1−β)−1 � 1. As expected, the total energy flux, WS(t), increases
monotonically with t. At the final stage (t = rc/v) of the relativistic expansion (with β ∼ 1)
WS � WJ . Hence in this case the radiated energy WS is mainly gained from the plasma
sphere.

5. Conclusion

An exact solution of the uniform radial expansion of a neutral, infinitely conducting plasma
sphere in the presence of a dipole magnetic field has been obtained. The electromagnetic fields
are derived by using the appropriate boundary and initial conditions, equations (25) and (26).
It is shown that the electromagnetic fields are perturbed only within the domain extending
from the surface of the expanding plasma sphere r = R = vt to the surface of the expanding
information sphere r = ct . External to the sphere r = ct the magnetic field is not perturbed
and is given by the dipole magnetic field. In the course of this study we have also considered
the energy balance during the plasma sphere expansion. The model calculations show that the
radiated energy is mainly gained from the plasma sphere. For relativistic expansion the ratio
WS/WJ is close to unity and the radiated energy is practically gained only from the plasma
sphere.

We expect our theoretical findings to be useful in experimental investigations as well as
in numerical simulations of the plasma expansion into an ambient nonuniform magnetic field.
One of the improvements of our model will be to include the effect of the deceleration of the
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plasma sphere as well as the derivation of the dynamical equation for the surface deformation.
A study of this and other aspects will be reported elsewhere.
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Appendix A. Sums with Legendre polynomials

Using the known relation [15]

F0(x, θ) = 1

(1 + x2 − 2x cos θ)1/2
=

∞∑
l=0

Dl(x)Pl(cos θ), (A.1)

where Dl(x) = xl at |x| � 1 and Dl(x) = x−l−1 at |x| > 1, one can derive some sums with
Legendre polynomials Pl(cos θ) which are used in the main text of the paper. The first relation
is obtained from equation (A.1) by taking the partial derivative of the function F0(x, θ):

∂

∂x
F0(x, θ) = cos θ − x

(1 + x2 − 2x cos θ)3/2
=

∞∑
l=0

D′
l(x)Pl(cos θ). (A.2)

Here the prime indicates the derivative with respect to the argument.
The second relation follows from equation (A.1) if we take the partial derivative over θ :

− ∂

∂θ
F0(x, θ) = x sin θ

(1 + x2 − 2x cos θ)3/2
=

∞∑
l=1

Dl(x)P 1
l (cos θ), (A.3)

where P 1
l (cos θ) are the generalized Legendre polynomials P ν

l (cos θ) with ν = 1.
The third sum is calculated as

∂

∂x
[xF0(x, θ)] = 1 − x cos θ

(1 + x2 − 2x cos θ)3/2
=

∞∑
l=0

[xD′
l(x) + Dl(x)]Pl(cos θ). (A.4)

Consider now the sum

F(x, θ) =
∞∑
l=1

l

l + 1
xl+1P 1

l (cos θ) = − ∂

∂θ

∞∑
l=1

l

l + 1
xl+1Pl(cos θ), (A.5)

where x < 1. It is easy to see that

∂

∂x
F (x, θ) = −x

∂2

∂x∂θ
F0(x, θ) = x sin θ

∂

∂x

x

(1 + x2 − 2x cos θ)3/2
. (A.6)

Using equation (A.6) we finally obtain

F(x, θ) = sin θ

[
x2F 3

0 (x, θ) −
∫ x

0
F 3

0 (t, θ)t dt

]
= x2 sin θ

(1 + x2 − 2x cos θ)3/2
− 1

sin θ

(
1 − 1 − x cos θ

(1 + x2 − 2x cos θ)1/2

)
. (A.7)

In equation (A.7) we have used the initial condition F (0, θ) = 0.
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Appendix B. Evaluation of the vector potential

For evaluation of the integral equation (32) we consider the explicit expression for the spherical
Hankel functions h

(1)
l (z) [15],

h
(1)
l (z) = (−i)l+1 eiz

l∑
k=0

( i

2

)k (l + k)!

k!(l − k)!

1

zk+1
, (B.1)

and assume that bl(λ) = Bl/λ
l+1, where Bl does not depend on λ. This choice of bl(λ) assures

that Bl is constant (see below). Inserting equation (B.1) and bl(λ) into equation (32) we obtain

Bl

l∑
k=0

( i

2

)k (l + k)!

k!(l − k)!

(
1 − β

βτ

)k+1

�k+l+1(τ ) = −il
(

vt

r0

)l

, (B.2)

where τ = t (1 − β) > 0 and

�n(τ ) = 1

2π i

∫ iσ+∞

iσ−∞

e−iλτ dλ

λn+1
= 1

n!

∂n

∂qn

[
1

2π i

∫ iσ+∞

iσ−∞

e−iλτ dλ

λ − q

]
q=0

. (B.3)

Here Im q < σ . The integral within the square brackets according to Kochi’s theorem and
at τ > 0 is equal to −e−iqτ . Therefore �n(τ ) = −(−iτ)n/n!. Inserting this function into
equation (B.2) we arrive at equation (33) (see, e.g., [15]). The complete solution is obtained
by inserting equation (33) into equation (31) and evaluating the contour integral as it was done
above.
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